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1 Abstract

We present second-order accurate central finite volume methods adapted here
to three-dimensional problems in ideal magnetohydrodynamics. These meth-
ods alternate between two staggered grids, thus leading to Riemann solver-free
algorithms with relatively favorable computing times.
The original grid considered in this paper is Cartesian, while the dual grid
features either Cartesian or diamond-shaped oblique dual cells.
The div·B = 0 constraint on the magnetic field is enforced with a suitable
adaptation of the constrained transport method to our central schemes.
Numerical experiments show the feasibility of these methods and our results
are in good agreement with existing results in the literature.

2 Introduction

The equations of ideal MHD, which consist of the conservation laws for the
mass density ρ, momentum ρv, total energy ρe as well as Faraday’s induction
law, can be written as [JT64]
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where B is the magnetic field and I is the (3×3) identity matrix; the thermal
pressure is computed from an ideal gas equation of state,

P = (γ − 1)(ρe−
1

2
ρ|v|2 −

1

2
|v|2), (2)

where γ denotes the ratio of specific heats.
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3 3D Central Schemes with Cartesian or
Diamond-shaped Dual Cells

The 3D-numerical schemes considered here are based on our 2-dimensional
finite volume schemes [AV95][ASV95], inspired from the Nessyahu-Tadmor 1-
dimensional central scheme [NT90].
We consider the three-dimensional hyperbolic system:

−→
U t +∇ · F =

−→
U t +

−→
f x +−→g y +

−→
h z = 0, t > 0, (3)

with initial condition
−→
U (x, y, z, t = 0) =

−→
U 0(x, y, z).

The computational domain is a uniform parallelepiped-shaped grid. We con-
sider here the case of Cartesian dual cells. Starting from cell-average values
−→
U n

ijk defined, at time tn on the Cartesian cells Ci,j,k ≡ [xi−1/2, xi+1/2] ×
[yj−1/2, yj+1/2]× [zk−1/2, zk+1/2] of the original grid, we compute new values
−→
U n+1

i+1/2,j+1/2,k+1/2
defined, at time tn+1, on the staggered Cartesian dual cells

Di+1/2,j+1/2,k+1/2 = [xi, xi+1] × [yj , yj+1] × [zk, zk+1] ≡ Di,j,k for simplicity
(fig.1, dashed line cube) by integrating (3) on Di,j,k × [tn, tn+1] and applying
Green’s theorem, obtaining
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Fig. 1. One dual cell (dashed line cube) intersects two layers of four original cells
(solid line cubes)

V ol(Di,j,k)
−→
U n+1

i+1/2,j+1/2,k+1/2
) ≡

∫

Di,j,k

−→
U (x, y, z, tn+1)dV =

∫

Di,j,k

−→
U (x, y, z, tn)dV −

∫ tn+1

tn

∫

∂Di,j,k

(
−→
f nx +−→g ny +

−→
h nz)dAdt (4)
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where −→n = (nx, ny, nz) = unit outer normal to ∂Di,j,k (boundary of Di,j,k).
Applying piecewise linear interpolants in x, y, z with slopes controlled by van
Leer’s MC-θ limiter, and a midpoint quadrature for the time integration leads

to second-order accuracy; the intermediate time value
−→
U n+1/2 is obtained

using an explicit Euler time discretization of (3) ([T05]). A similar second
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Fig. 2. (Left) Two Cartesian cells Ci,j,k, Ci+1,j,k and dual diamond cell Di+1/2,j,k.
(Middle and right) Six diamond dual cells along the x and z directions (middle) and
the y direction (right) are required to compute ∇ ·Bn+1

i+1/2,j,k

time step then uses the values
−→
U n+1

i+1/2,j+1/2,k+1/2
to construct values Un+2

ijk on

the original cells Cijk. The scheme using diamond-shaped dual cells Di+1/2,j,k

(or Di,j+1/2,k and Di,j,k+1/2, respectively) (see fig.2, left) proceeds in a similar
way, see[AT05, TA06].

4 A Constrained Transport divergence treatment for 3D
Central Schemes (CTCS)

Based on experimental observations, the expression of the magnetic field B
given by Biot and Savart’s law [PP55] leads to the existence of a magnetic
vector potential A such that curlA = B and therefore to Maxwell’s equation
∇·B = 0, which must be satisfied. Faraday’s law guarantees that if the initial
magnetic field is solenoidal, it remains divergence-free at upcoming time. But
the accumulation of numerical errors most often leads to a numerical solution
which does not satisfy the ∇·B = 0 constraint. Among many useful methods
to restore a solenoidal B, Evans and Hawley’s Constrained Transport (CT)
approach [EH88] has proven to be very efficient. Since our schemes use two
staggered grids, none of the existing versions of the CT method can be applied
directly. Our own approach to satisfy the divergence constraint, inspired from



4 P.Arminjon and R.Touma

the CT method, is based on a specific discretization of the induction equation
on both the original and staggered dual grids. In this paper we describe our
Constrained Transport method for Central Schemes (CTCS) in the case of
diamond-shaped dual cells Di+1/2,j,k.

Let
−→
U n

ijk denote the solution at time tn on the Cartesian cell Cijk, and
−→
U n+1

i+1/2,j,k the solution at time tn+1 on the staggered dual cell Di+1/2,j,k. We

suppose that the constraint ∇·Bn
ijk = 0 is satisfied, i.e., the central difference

discretization of the divergence operator satisfies

∇ ·Bn
i,j,k ≈

Bn,x
i+1,j,k −Bn,x

i−1,j,k

2∆x
+

Bn,y
i,j+1,k −Bn,y

i,j−1,k

2∆y

+
Bn,z

i,j,k+1
−Bn,z

i,j,k−1

2∆z
= 0. (5)

Performing the step tn → tn+1, we obtain a solution
−→
U n+1

i+1/2,j,k for the dual

cells Di+1/2,j,k whose magnetic field part, denoted by B∗, must be treated to

obtain a divergence-free magnetic field Bn+1. We first compute the electric

field E
n+1/2

i+1/2,j,k = (Ωx, ΩyΩz)
n+1/2

i+1/2,j,k at time tn+1/2 using the data at time tn

and tn+1, on the original and the dual staggered grids, respectively, as follows:

E
n+1/2

i+1/2,j,k = −(v×B)
n+1/2

i+1/2,j,k

∼= −
1

2

[

(vn+1 ×B∗)i+1/2,j,k +
1

2

{

(v×B)n
i,j,k + (v×B)n

i+1,j,k

}

]

. (6)

This discretization will ensure second-order accuracy with respect to time. We
then discretize the induction equation ∂tB+∇×E = 0 on the Di+1/2,j,k-type
dual cells using the following centered differences:

Bn+1,x
i+1/2,j,k =

1

2
(Bn,x

i,j,k + Bn,x
i+1,j,k)−∆t

Ω
n+1/2,z
i+1/2,j+1,k −Ω

n+1/2,z
i+1/2,j−1,k

2∆y

+ ∆t
Ω

n+1/2,y
i+1/2,j,k+1

−Ω
n+1/2,y
i+1/2,j,k−1

2∆z
, (7)

with similar expressions for the y and z components [TA06]. This special
discretization of the induction equation and the above interpolation for the
electric field at the intermediate time tn+1/2 preserve the second-order accu-
racy of the base scheme.
It can be shown that these choices lead to

∇ ·Bn+1

i+1/2,j,k =
1

2

{

∇ ·Bn
i,j,k +∇ ·Bn

i+1,j,k

}

= 0 (8)

since the magnetic field B was assumed to be solenoidal at time tn. A similar
treatment of the magnetic field on the cells of type Di,j+1/2,k and Di,j,k+1/2
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then guarantees a divergence-free magnetic field Bn+1 at time tn+1.
The CTCS divergence treatment in the case of Cartesian dual cells proceeds
in a similar way [TA06].

5 Numerical Experiments

Due to the use of two staggered dual grids, which results in a restriction on
the time step, our numerical experiments have been performed with a CFL
number of 0.475.
1. Our first test is an Orszag-Tang-type problem [DW98, T00, Z04], which is
itself a modification of a problem proposed by Nodes et al. [NGL04]. The initial
data are as follows:ρ(x, y, z) = ρ0, p(x, y, z) = p0, u(x, y, z) = − sin y sin z i+
sinx sin z j, B(x, y, z) = − sin y sin z i + sin(2x) sin z j + sin(2x) sin y k, with
0 ≤ x, y, z ≤ 2π, ρ0 = 25/36 and p0 = 5/3. i, j, and k are the unit vectors
in the x, y, and z−directions, respectively. We have computed the solution
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Fig. 3. (Left) Mass density contours in the plane z = π/2. (Right) energy along the
line y = z = π/2 obtained with (solid line and dashed line) or without (dotted line)
the aid of the CTCS treatment.

at time t = 0.5 on 1003 gridpoints using the Cartesian dual cell scheme;
thanks to our CTCS divergence treatment, the maximum absolute value of
the divergence observed for this Orszag-Tang vortex problem is of the order
of 10−14. Fig.3 (left) shows the contours of the mass density in the plane
x = π/2 at time t = 0.5. If we do not apply the CTCS divergence treatment
the base scheme can still reach the final time without showing instabilities:
we have also solved this problem using the diamond dual cell scheme on 503

gridpoints, without CTCS divergence treatment. Fig.3 (right) shows the plots
along the line y = z = π/2 of the energy obtained with the Cartesian dual
cell with CTCS treatment and on both a 1003 grid (solid line) and a 503 grid
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(dashed line), and with the diamond dual scheme without CTCS divergence
treatment (dotted line). We find that the numerical results obtained without
CTCS treatment are still reasonable, and the maximum of the absolute value
of ∇ ·B observed in this case is 3.124 10−1. Comparing the dotted line with
the dashed line, the necessity of a divergence treatment is more apparent in
the neighborhood of local extremas.
2. Our second test is a three-dimensional adaptation of a classical 2D MHD
shock-cloud interaction problem [10,24,27,20]. The computational domain
(x, y, z) ∈ [0, 1]3 is uniformly discretized using 1003 gridpoints. Two con-
stant states Ul =[3.86859,11.2536, 0, 0, 167.345, 0, 2.1826182, -2.1826182 ]
and Ur = [1, 0, 0, 0, 1,0, 0.56418958, 0.56418958] are separated by the plane
x = 0.05; here U = (ρ, ux, uy, uz, p, Bx, By, Bz). A 10 times denser spher-
ical cloud centered at (0.25,0.5,0.5) with a radius r = 0.15 is in hydrostatic
equilibrium with the surrounding state. The profile of the initial mass density
is shown in Fig.4 (left). The numerical solution is computed at time t = 0.06
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Fig. 4. (Left) Initial mass density profile for the 3D shock-cloud interaction problem;
we also see the velocity field magnitude as a cone plot. (Right) several contour lines
of the mass density logarithm at time t = 0.06

using the Cartesian dual cell scheme along with its corresponding CTCS di-
vergence treatment; the maximum absolute value of the divergence observed
remains within the 10−12 values (fig5 (d)). An equivalent variant of this three-
dimensional problem is considered in [Z04]. Fig.4 (right) shows several contour
lines of the mass density. Fig.5 (a) shows a plot of the mass density using the
Cartesian dual cell scheme with the CTCS divergence treatment and 1503

gridpoints; the results are very similar to the reference solution presented in
[27]. We have also included in this figure our results using the diamond dual
cell scheme scheme with 603 gridpoints and no CTCS divergence treatment.
Fig.5 (b) shows the same comparison for the energy. We observe that the base
scheme does not become unstable; although ∇ · B is not negligible (fig.5(c),
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Fig. 5. Shock-cloud interaction problem: (a) plot of the mass density along the
line y = z = 0.5, 0 ≤ x ≤ 1 obtained using the base scheme with the CTCS (150
points, solid line) and without any divergence treatment (60 points, dotted line);
same comparison for the energy (b)

showing ∇ ·B along the line y = z = 0.5), the numerical solution still gives a
somewhat reasonable overall approximation, with more significant deviations
at gridpoints where the divergence is non-negligible (fig.5(a),(b)).

6 Conclusion

We have presented three-dimensional, second-order accurate finite volume cen-
tral schemes for solving systems of hyperbolic equations in the context of MHD
problems. The resolution of the Riemann problems at the cell interfaces is
avoided thanks to the use of two staggered dual grids at alternate time steps.
The cells of the original grid are Cartesian while those of the dual grid are
either Cartesian or diamond-shaped.
To maintain a divergence-free magnetic field, we have constructed a method
inspired from Evans and Hawley’s Constrained Transport approach which
treats, at the end of each time step, the magnetic field obtained using our nu-
merical base scheme. This Constrained Transport method for Central Schemes
("CTCS") applies to both Cartesian and diamond-shaped dual cell schemes
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and preserves the second-order accuracy of the base scheme. The divergence
of the magnetic field is thus maintained under 10−11.
For the ideal MHD problems we have considered here, both numerical schemes
can still reach the final time and even yield reasonable results without gen-
erating instabilities, when we do not apply the CTCS procedure; but in this
case, the magnetic field does not remain solenoidal and the CTCS method
should in fact be applied for optimal results.
Our numerical results obtained with both base schemes are very similar, and
in very good agreement with other results in the literature.
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